September 22, 2021

tacere

Beauty Made Perfect

Measuring landslide vulnerability status of Chukha, Bhutan using deep learning algorithms

  • 1.

    Thongley, T. & Vansarochana, C. Landslide susceptibility assessment using frequency ratio model at Ossey watershed area in Bhutan. Eng. Appl. Sci. Res. 48(1), 56–64 (2021).


    Google Scholar
     

  • 2.

    Kashyap, R., Pandey, A. C. & Parida, B. R. Spatio-temporal variability of monsoon precipitation and their effect on precipitation triggered landslides in relation to relief in Himalayas. Spat. Inf. Res. https://doi.org/10.1007/s41324-021-00392-8 (2021).

    Article 

    Google Scholar
     

  • 3.

    Nor Diana, M. I., Muhamad, N., Taha, M. R., Osman, A. & Alam, M. Social vulnerability assessment for landslide hazards in Malaysia: A systematic review study. Land 10(3), 315 (2021).

    Article 

    Google Scholar
     

  • 4.

    Ram, P. & Gupta, V. Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, Lesser Himalaya, India. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-021-01449-2 (2021).

    Article 

    Google Scholar
     

  • 5.

    Kumar, P., Mital, A., Ray, P. C. & Chattoraj, S. L. Landslide hazard and risk assessment along nh-108 in parts of Lesser Himalaya, Uttarkashi, using weighted overlay method. In Geohazards (eds Gali, M. L. & Raghuveer-Rao, P.) 163–180 (Springer, 2021).

    Chapter 

    Google Scholar
     

  • 6.

    Li, Y., Chen, L., Yin, K., Zhang, Y. & Gui, L. Quantitative risk analysis of the hazard chain triggered by a landslide and the generated tsunami in the Three Gorges Reservoir area. Landslides 18(2), 667–680 (2021).

    Article 

    Google Scholar
     

  • 7.

    Li, Z., Deng, X. & Zhang, Y. Evaluation and convergence analysis of socio-economic vulnerability to natural hazards of Belt and Road Initiative countries. J. Clean. Prod. 282, 125406 (2021).

    Article 

    Google Scholar
     

  • 8.

    van Westen, C. J., Fonseca, F., & Van den Bout, B. Challenges in analyzing landslide risk dynamics for risk reduction planning. (2021).

  • 9.

    Tsangaratos, P., Loupasakis, C., Nikolakopoulos, K., Angelitsa, V. & Ilia, I. Developing a landslide susceptibility map based on remote sensing, fuzzy logic and expert knowledge of the Island of Lefkada, Greece. Environ. Earth Sci. 77, 363. https://doi.org/10.1007/s12665-018-7548-6 (2018).

    Article 

    Google Scholar
     

  • 10.

    Dikshit, A., Sarkar, R., Pradhan, B., Acharya, S. & Alamri, A. M. Spatial landslide risk assessment at Phuentsholing, Bhutan. Geosciences 10(4), 131. https://doi.org/10.3390/geosciences10040131 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Reichenbach, P., Rossi, M., Malamud, B., Mihir, M. & Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 180, 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Bui, D. T., Tsangaratos, P., Nguyen, V. T., Van Liem, N. & Trinh, P. T. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188, 104426. https://doi.org/10.1016/j.catena.2019.104426 (2020).

    Article 

    Google Scholar
     

  • 13.

    Pourghasemi, H. R. & Kerle, N. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 75, 185. https://doi.org/10.1007/s12665-015-4950-1 (2016).

    Article 

    Google Scholar
     

  • 14.

    Chen, W., Sun, Z. & Han, J. Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Appl. Sci. 9(1), 171. https://doi.org/10.3390/app9010171 (2019).

    Article 

    Google Scholar
     

  • 15.

    Pham, B. T. et al. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. CATENA 175, 203–218. https://doi.org/10.1016/j.catena.2018.12.018 (2019).

    Article 

    Google Scholar
     

  • 16.

    Liu, Y. & Wu, L. Geological disaster recognition on optical remote sensing images using deep learning. Procedia Comput. Sci. 91, 566–575. https://doi.org/10.1016/j.procs.2016.07.144 (2016).

    Article 

    Google Scholar
     

  • 17.

    Schmidhuber, J. Deep learning in neural networks: An overview. Neural Net. 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003 (2015).

    Article 

    Google Scholar
     

  • 18.

    Yu, H., Ma, Y., Wang, L., Zhai, Y. & Wang, X. A landslide intelligent detection method based on CNN and rsg_r. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017, 40–44 (IEEE, 2017).

  • 19.

    Ghorbanzadeh, O. et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 11, 196. https://doi.org/10.3390/rs11020196 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Pourghasemi, H. R. & Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision?. CATENA 162, 177–192. https://doi.org/10.1016/j.catena.2017.11.022 (2018).

    Article 

    Google Scholar
     

  • 21.

    Sarkar, R. & Dorji, K. Determination of the probabilities of landslide events—A case study of Bhutan. Hydrology 6, 52 (2019).

    Article 

    Google Scholar
     

  • 22.

    Gariano, S. L. et al. Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan. Bull. Eng. Geol. Environ. 78, 4325–4332 (2019).

    Article 

    Google Scholar
     

  • 23.

    Kuenza, K., Dorji, Y. & Wangda, D. Landslides in Bhutan. In Proceedings of the SAARC Workshop on Landslide Risk Management in South Asia, Thimphu, Bhutan, 11–12 May 2010, 73–80 (2010).

  • 24.

    Yilmaz, C., Topal, T. & Suzen, M. L. GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ. Earth Sci. 65, 2161–2178. https://doi.org/10.1007/s12665-011-1196-4 (2012).

    Article 

    Google Scholar
     

  • 25.

    Cama, M., Lombardo, L., Conoscenti, C. & Rotigliano, E. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology 288, 52–65. https://doi.org/10.1016/j.geomorph.2017.03.025 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6 (2007).

    Article 

    Google Scholar
     

  • 27.

    Quinlan, J. R. C4.5: Programs for Machine Learning (Morgan Kaufmann, 1993).


    Google Scholar
     

  • 28.

    Hosseinalizadeh, M. et al. Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology 329, 184–193. https://doi.org/10.1016/j.geomorph.2019.01.006 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Pham, B. T., Bui, D. T., Prakash, I. & Dholakia, M. B. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149, 52–63. https://doi.org/10.1016/j.catena.2016.09.007 (2017).

    Article 

    Google Scholar
     

  • 30.

    Kavzoglu, T. & Mather, P. M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 24(23), 4907–4938. https://doi.org/10.1080/0143116031000114851 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Haykin, S. Neural Networks: A Comprehensive Foundation (Prentice Hall, 1998).

    MATH 

    Google Scholar
     

  • 32.

    Bergmeir, C. & Benitez, J. M. Neural networks in R using the stuttgart neural network simulator: RSNNS. J. Stat. Softw. https://doi.org/10.1863/jss.v046.i07 (2012).

    Article 

    Google Scholar
     

  • 33.

    LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998).

    Article 

    Google Scholar
     

  • 34.

    Ding, A., Zhang, Q., Zhou, X. & Dai, B. Automatic recognition of landslide based on CNN and texture change detection. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC) 444–448 (IEEE, 2016).

  • 35.

    Nair, V. & Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807–814 (2010).

  • 36.

    Szegedy, C., et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9 (2015).

  • 37.

    Zeiler, M. D. & Fergus, R. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014. Proceedings, Part I, Vol. 818, p. 833 (2014).

  • 38.

    Simonyan, K. & Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

  • 39.

    Wang, Y., Fang, Z. & Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 666, 975–993. https://doi.org/10.1016/j.scitotenv.2019.02.263 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Kim, P. Matlab deep learning. Mach. Learn. Neural Netw. Artif. Intell. 130, 21 (2017).


    Google Scholar
     

  • 41.

    Lewis, N. D. C. Deep learning made easy with R: A gentle introduction for data science. In Advances in Swarm Intelligence11th International Conference, ICSI (AusCov), Belgrade (2016).

  • 42.

    Rahmati, O. et al. PMT: New analytical framework for automated evaluation of geo-environmental modeling approaches. Sci. Total Environ. 664, 296–311. https://doi.org/10.1016/j.scitotenv.2019.02.017 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Lombardo, L. et al. Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. J. Geophys. Res. Earth Surf. 124, 1958–1980. https://doi.org/10.1029/2019JF005056 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, 2000).

    Book 

    Google Scholar
     

  • 45.

    Baeza, C. & Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf. Process. Landforms 26(12), 1251–1263. https://doi.org/10.1002/esp.263 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Meena, S. R., Ghorbanzadeh, O. & Blaschke, T. A comparative study of statistics-based landslide susceptibility models: A case study of the region affected by the gorkha earthquake in nepal. ISPRS Int. J. Geo Inf. 8(2), 94. https://doi.org/10.3390/ijgi8020094 (2019).

    Article 

    Google Scholar
     

  • 47.

    Park, S., Choi, C., Kim, B. & Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 68(5), 1443–1464. https://doi.org/10.1007/s12665-012-1842-5 (2013).

    Article 

    Google Scholar
     

  • 48.

    Bui, D. T. et al. A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomat. Nat. Haz. Risk 6(3), 243–271 (2015).

    Article 

    Google Scholar
     

  • 49.

    Chen, W., Pourghasemi, H. R., Kornejady, A. & Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 305, 314–327 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Yi, Y., Zhang, Z., Zhang, W., Jia, H. & Zhang, J. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. CATENA 195, 104851. https://doi.org/10.1016/j.catena.2020.104851 (2020).

    Article 

    Google Scholar
     

  • 51.

    Lin, G. F., Chang, M. J., Huang, Y. C. & Ho, J. Y. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Eng. Geol. 224, 62–74 (2017).

    Article 

    Google Scholar
     

  • 52.

    Roy, J., Saha, S., Arabameri, A., Blaschke, T. & Bui, D. T. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sens. 11(23), 2866. https://doi.org/10.3390/rs11232866 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Sadighi, M., Motamedvaziri, B., Ahmadi, H. & Moeini, A. Assessing landslide susceptibility using machine learning models: A comparison between ANN, ANFIS, and ANFIS-ICA. Environ. Earth Sci. 79(24), 1–14. https://doi.org/10.1007/s12665-020-09294-8 (2020).

    Article 

    Google Scholar
     

  • 54.

    Yao, J. et al. Assessment of landslide susceptibility combining deep learning with semi-supervised learning in Jiaohe County, Jilin Province, China. Appl. Sci. 10(16), 5640. https://doi.org/10.3390/app10165640 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Band, S. S. et al. Novel ensemble approach of Deep Learning Neural Network (DLNN) model and Particle Swarm Optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors 20(19), 5609. https://doi.org/10.3390/s20195609 (2020).

    ADS 
    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 56.

    Zhang, L., Xiao, T., He, J. & Chen, C. Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides 16(10), 1965–1979. https://doi.org/10.1007/s10346-019-01247-y (2019).

    Article 

    Google Scholar
     

  • 57.

    Jenks, G. F. The data model concept in statistical mapping. International Yearbook of Cartography 7, 186–190 (1967).


    Google Scholar
     

  • 58.

    Chan, H., Chang, C. C., Chen, P. & Lee, J. T. Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan. CATENA 176, 419–429 (2019).

    Article 

    Google Scholar
     

  • 59.

    Wiegand, C., Kringer, K., Geitner, C. & Rutzinger, M. Regolith structure analysis—a contribution to understanding the local occurrence of shallow landslides (Austrian Tyrol). Geomorphology 183, 5–13 (2013).

    ADS 
    Article 

    Google Scholar