Personal carbon allowances revisited | Nature Sustainability

  • 1.

    Fuso Nerini, F. et al. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2, 674–680 (2019).

    Article 

    Google Scholar
     

  • 2.

    Warming Projections Gobal Update (Climate Action Tracker, 2021); https://climateactiontracker.org/publications/global-update-climate-summit-momentum/

  • 3.

    IEA World Energy Outlook 2020 (OECD, 2020); https://doi.org/10.1787/557a761b-en

  • 4.

    Reducing UK Emissions: 2020 Progress Report to Parliament (UK Climate Change Committee, 2020); https://www.theccc.org.uk/publication/reducing-uk-emissions-2020-progress-report-to-parliament/

  • 5.

    Fawcett, T. Personal carbon trading: a policy ahead of its time? Energy Policy 38, 6868–6876 (2010).

    Article 

    Google Scholar
     

  • 6.

    Fawcett, T. & Parag, Y. An introduction to personal carbon trading. Clim. Policy 10, 329–338 (2010).

    Article 

    Google Scholar
     

  • 7.

    Suryapratim, R. Situating the Individual Within a Behavioural Law and Economics Approach to End-User. Doctoral thesis, Univ. Groningen (2017).

  • 8.

    Parag, Y. & Fawcett, T. Personal carbon trading: a review of research evidence and real-world experience of a radical idea. Energy Emiss. Control Technol. 2, 23–32 (2014).

    Article 

    Google Scholar
     

  • 9.

    Synthesis Report on the Findings from Defra’s Pre-Feasibility Study into Personal Carbon Trading (DEFRA, 2008).

  • 10.

    Fleming, D. Energy and the Common Purpose: Descending the Energy Staircase with Tradable Energy Quotas (TEQs) (The Lean Economy Connection, 2007).

  • 11.

    Cap and Share—A Fair Way to Cut Greenhouse Emissions (FEASTA, 2008); https://www.feasta.org/2008/05/29/cap-and-share-a-fair-way-to-cut-greenhouse-emissions/

  • 12.

    Niemeier, D. et al. Rethinking downstream regulation: California’s opportunity to engage households in reducing greenhouse gases. Energy Policy 36, 3436–3447 (2008).

    Article 

    Google Scholar
     

  • 13.

    Raux, C. & Marlot, G. A system of tradable CO2 permits applied to fuel consumption by motorists. Transp. Policy 12, 255–265 (2005).

    Article 

    Google Scholar
     

  • 14.

    Woerdman, E. & Bolderdijk, J. W. Emissions trading for households? A behavioral law and economics perspective. Eur. J. Law Econ. 44, 553–578 (2017).

    Article 

    Google Scholar
     

  • 15.

    Ayres, R. U. Environmental market failures: are there any local market-based corrective mechanisms for global problems? Mitig. Adapt. Strateg. Glob. Change 1, 289–309 (1997).

    Article 

    Google Scholar
     

  • 16.

    Chatterton, T. An Introduction to Thinking about ‘Energy Behaviour’: A Multi Model Approach (Department of Energy and Climate Change, 2011); https://www.gov.uk/government/publications/thinking-about-energy-behaviour-a-multi-model-approach

  • 17.

    Darby, S. Literature Review for the Energy Demand Research Project (Environmental Change Institute, Univ. Oxford, 2010).

  • 18.

    Zanni, A. M., Bristow, A. L. & Wardman, M. The potential behavioural effect of personal carbon trading: results from an experimental survey. J. Environ. Econ. Policy 2, 222–243 (2013).

    Article 

    Google Scholar
     

  • 19.

    Bator, R. J., Tabanico, J. J., Walton, M. L. & Schultz, P. W. Promoting energy conservation with implied norms and explicit messages. Soc. Influ. 9, 69–82 (2014).

    Article 

    Google Scholar
     

  • 20.

    Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. The constructive, destructive, and reconstructive power of social norms: research article. Psychol. Sci. 18, 429–434 (2007).

    Article 

    Google Scholar
     

  • 21.

    Kormos, C., Gifford, R. & Brown, E. The influence of descriptive social norm information on sustainable transportation behavior: a field experiment. Environ. Behav. 47, 479–501 (2015).

    Article 

    Google Scholar
     

  • 22.

    Parag, Y., Capstick, S. & Poortinga, W. Policy attribute framing: a comparison between three policy instruments for personal emissions reduction. J. Policy Anal. Manage. 30, 889–905 (2011).

    Article 

    Google Scholar
     

  • 23.

    Parag, Y. & Eyre, N. Barriers to personal carbon trading in the policy arena. Clim. Policy 10, 353–368 (2010).

    Article 

    Google Scholar
     

  • 24.

    Corner, A. Personal carbon allowances–a ‘big idea that never took off’. The Guardian https://www.theguardian.com/sustainable-business/personal-carbon-allowances-budgets (30 April 2012).

  • 25.

    Fuso Nerini, F., Swain, A. & Swain, R. B. Sustainable development in the wake of COVID-19. Preprint at ResearchSquare https://doi.org/10.21203/rs.3.rs-63414/v1 (2020).

  • 26.

    Shan, Y. et al. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Change 11, 200–206 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 27.

    Vinuesa, R. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat.Commun. 11, 233 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Personal Carbon Trading—Fifth Report of Session 2007–08 (UK House of Commons Environmental Audit Committee, 2008); https://publications.parliament.uk/pa/cm200708/cmselect/cmenvaud/565/565.pdf

  • 29.

    Gough, I. Heat, Greed and Human Need: Climate Change, Capitalism and Sustainable Wellbeing (Elgar, 2017).

  • 30.

    Lockwood, M. The economics of personal carbon trading. Clim. Policy 10, 447–461 (2010).

    Article 

    Google Scholar
     

  • 31.

    Drummond, P. & Ekins, P. Reducing CO2 emissions from residential energy use. Build. Res. Inf. 44, 585–603 (2016).

    Article 

    Google Scholar
     

  • 32.

    Rosenow, J., Fawcett, T., Eyre, N. & Oikonomou, V. Energy efficiency and the policy mix. Build. Res. Inf. 44, 562–574 (2016).

    Article 

    Google Scholar
     

  • 33.

    Whitmarsh, L., Seyfang, G. & O’Neill, S. Public engagement with carbon and climate change: to what extent is the public ‘carbon capable’? Glob. Environ. Change 21, 56–65 (2011).

    Article 

    Google Scholar
     

  • 34.

    Andersson, D., Lofgren, A. & Widergerg, A. Attitudes to Personal Carbon Allowances (School of Business, Economics and Law, Univ. Gothenburg, 2011); https://gupea.ub.gu.se/handle/2077/25549

  • 35.

    Starkey, R. Personal carbon trading: a critical survey. Part 1: equity. Ecol. Econ. 73, 7–18 (2012).

    Article 

    Google Scholar
     

  • 36.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018); http://www.ipcc.ch/report/sr15/

  • 37.

    Martiskainen, M. et al. Contextualizing climate justice activism: knowledge, emotions, motivations, and actions among climate strikers in six cities. Glob. Environ. Change 65, 102180 (2020).

    Article 

    Google Scholar
     

  • 38.

    Parth, A.-M., Weiss, J., Firat, R. & Eberhardt, M. “How dare you!”—the influence of Fridays for Future on the political attitudes of young adults. Front. Polit. Sci. 2, 611139 (2020).

    Article 

    Google Scholar
     

  • 39.

    Marquardt, J. Fridays for Future’s disruptive potential: an inconvenient youth between moderate and radical Ideas. Front. Commun. 5, 48 (2020).

    Article 

    Google Scholar
     

  • 40.

    Woerdman, E., Couwenberg, O. & Nentjes, A. Energy prices and emissions trading: windfall profits from grandfathering? Eur. J. Law Econ. 28, 185–202 (2009).

    Article 

    Google Scholar
     

  • 41.

    Willis, R. Too Hot to Handle? The Democratic Challenge of Climate Change (Bristol Univ. Press, 2020).

  • 42.

    Emissions Gap Report 2020 (UNEP, 2020); https://www.unep.org/emissions-gap-report-2020

  • 43.

    Akinbi, A., Forshaw, M. & Blinkhorn, V. Contact tracing apps for the COVID-19 pandemic: a systematic literature review of challenges and future directions for neo-liberal societies. Heal. Inf. Sci. Syst. 9, 18 (2021).

    Article 

    Google Scholar
     

  • 44.

    Shahroz, M. et al. COVID-19 digital contact tracing applications and techniques: a review post initial deployments. Transp. Eng. 5, 100072 (2021).

    Article 

    Google Scholar
     

  • 45.

    Kapa, S., Halamka, J. & Raskar, R. Contact tracing to manage COVID- 19 spread—balancing personal privacy and public health. Mayo Clin. Proc. 95, 1320–1322 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Sharma, T. & Bashir, M. Use of apps in the COVID-19 response and the loss of privacy protection. Nat. Med. 26, 1165–1167 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Darby, S. J. The role of smart meters in carbon management. Carbon Manage. 4, 111–113 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Sullivan, R. K. et al. Smartphone apps for measuring human health and climate change co-benefits: a comparison and quality rating of available apps. JMIR mHealth uHealth 4, e135 (2016).

    Article 

    Google Scholar
     

  • 49.

    Nunes, I. & Jannach, D. A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User Adapt. Interact. 27, 393–444 (2017).

    Article 

    Google Scholar
     

  • 50.

    Zawacki-Richter, O., Marín, V. I., Bond, M. & Gouverneur, F. Systematic review of research on artificial intelligence applications in higher education–where are the educators? Int. J. Educ. Technol. High. Educ. 16, 39 (2019).

    Article 

    Google Scholar
     

  • 51.

    Park Woolf, B. Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-Learning (Elsevier, 2009).

  • 52.

    Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

    Article 

    Google Scholar
     

  • 53.

    Fawcett, T. Personal carbon trading in different national contexts. Clim. Policy 10, 339–352 (2010).

    Article 

    Google Scholar
     

  • 54.

    Woerdman, E. Path-dependent climate policy: the history and future of emissions trading in Europe. Eur. Environ. 14, 261–275 (2004).

    Article 

    Google Scholar
     

  • 55.

    OECD in Science, Technology and Industry Outlook 2010 251–279 (OECD, 2010).

  • 56.

    Gunningham, N. & Sinclair, D. Regulatory pluralism: designing policy mixes for environmental protection. Law Policy 21, 49–76 (1999).

    Article 

    Google Scholar
     

  • 57.

    Kern, F., Kivimaa, P. & Martiskainen, M. Policy packaging or policy patching? The development of complex energy efficiency policy mixes. Energy Res. Soc. Sci. 23, 11–25 (2017).

    Article 

    Google Scholar
     

  • 58.

    Howlett, M. & Rayner, J. in Handbook of Policy Formulation (eds Howlett, M. et al) 112–128 (Edward Elgar, 2017).

  • 59.

    Dobbins, A., Fuso Nerini, F., Deane, P. & Pye, S. Strengthening the EU response to energy poverty. Nat. Energy 4, 2–5 (2019).

    Article 

    Google Scholar
     

  • 60.

    Véliz, C. Privacy and digital ethics after the pandemic. Nat. Electronics 4, 10–11 (2021).

    Article 
    CAS 

    Google Scholar
     

  • 61.

    Thumim, J. & White, V. Distributional Impacts of Personal Carbon Trading: A Report to the Department for Environment, Food and Rural Affairs (DEFRA, 2008); https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs/about/research (2008).

  • 62.

    Li, J., Fan, J., Zhao, D. & Wang, S. Allowance price and distributional effects under a personal carbon trading scheme. J. Clean. Prod. 103, 319–329 (2015).

    Article 

    Google Scholar
     

  • 63.

    Uusitalo, E., Kuokkanen, A., Uusitalo, V., von Wright, T. & Huttunen, A. Personal carbon trading in mobility may have positive distributional effects. Case Stud. Transp. Policy 9, 315–323 (2021).

    Article 

    Google Scholar
     

  • 64.

    Parag, Y. & Strickland, D. Personal carbon trading: a radical policy option for reducing emissions from the domestic sector. Environment 53, 29–37 (2011).


    Google Scholar